Landslide Susceptibility Mapping Based on Particle Swarm Optimization of Multiple Kernel Relevance Vector Machines: Case of a Low Hill Area in Sichuan Province, China
نویسندگان
چکیده
In this paper, we propose a multiple kernel relevance vector machine (RVM) method based on the adaptive cloud particle swarm optimization (PSO) algorithm to map landslide susceptibility in the low hill area of Sichuan Province, China. In the multi-kernel structure, the kernel selection problem can be solved by adjusting the kernel weight, which determines the single kernel contribution of the final kernel mapping. The weights and parameters of the multi-kernel function were optimized using the PSO algorithm. In addition, the convergence speed of the PSO algorithm was increased using cloud theory. To ensure the stability of the prediction model, the result of a five-fold cross-validation method was used as the fitness of the PSO algorithm. To verify the results, receiver operating characteristic curves (ROC) and landslide dot density (LDD) were used. The results show that the model that used a heterogeneous kernel (a combination of two different kernel functions) had a larger area under the ROC curve (0.7616) and a lower prediction error ratio (0.28%) than did the other types of kernel models employed in this study. In addition, both the sum of two high susceptibility zone LDDs (6.71/100 km2) and the sum of two low susceptibility zone LDDs (0.82/100 km2) demonstrated that the landslide susceptibility map based on the heterogeneous kernel model was closest to the historical landslide distribution. In conclusion, the results obtained in this study can provide very useful information for disaster prevention and land-use planning in the study area.
منابع مشابه
A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, China
In this study, a novel coupling model for landslide susceptibility mapping is presented. In practice, environmental factors may have different impacts at a local scale in study areas. To provide better predictions, a geographically weighted regression (GWR) technique is firstly used in our method to segment study areas into a series of prediction regions with appropriate sizes. Meanwhile, a sup...
متن کاملLandslide Susceptibility Mapping Using Fusion Models of Frequency Ratio (FR) and Analytical Hierarchy Process (AHP)
Landslide susceptibility zonation mapping is necessary in urban and rural development planning. So far different methods are presented for Landslide susceptibility zonation. In this study, using statistical method of Frequency ratio and Analytical Hierarchy Process (AHP) based on paired comparison and intervention based such as slope, aspect, altitude, geology, land use, Normalized vegetatio...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملThe Oil Layer Recognition Based on Multi-kernel Function Relevance Vector Machines
In the oil layer recognition, Relevance vector machines (RVM) have a good effect. But the single kernel function RVM has some limitations, a kind of multi-kernel function RVM based on particle swarm optimization (PSO) is proposed, which includes the model parameter estimation, model optimization on multi-kernel function RVM, PSO-based training, and recognition. The results of simulation experim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 5 شماره
صفحات -
تاریخ انتشار 2016